4,179 research outputs found

    Quantum dot emission from site-controlled ngan/gan micropyramid arrays

    Get PDF
    InxGa1−xN quantum dots have been fabricated by the selective growth of GaN micropyramid arrays topped with InGaN/GaN quantum wells. The spatially, spectrally, and time-resolved emission properties of these structures were measured using cathodoluminescence hyperspectral imaging and low-temperature microphotoluminescence spectroscopy. The presence of InGaN quantum dots was confirmed directly by the observation of sharp peaks in the emission spectrum at the pyramid apices. These luminescence peaks exhibit decay lifetimes of approximately 0.5 ns, with linewidths down to 650 me

    Scanning tunnelling miscroscopy/spectroscopy and X-ray absorption spectroscopy studies of Co adatoms and anoislands on highly oriented pyrolytic graphite

    Get PDF
    In this paper, the scanning tunneling microscopy, scanning tunneling spectroscopy and X-ray absorption spectroscopy of cobalt adatoms and nanoislands were studied on a highly oriented pyrolytic graphite. Local electronic structure were observed by STS.\ud \u

    3D seismic imaging of buried Younger Dryas mass movement flows: Lake Windermere, UK

    No full text
    Windermere is a glacially overdeepened lake located in the southeastern Lake District, UK. Using the threedimensional(3D) Chirp subbottom profiler, we image mass movement deposits related to the Younger Dryas(YD) within a decimetre-resolution 3D seismic volume, documenting their internal structure and interactionwith preexisting deposits in unprecedented detail. Three distinct flow events are identified and mappedthroughout the 3D survey area. Package structures and seismic attributes classify them as: a small (totalvolume of c. 1500 m3) debris flow containing deformed translated blocks; a large (inferred total volume ofc. 500,000 m3), homogeneous fine-grained mass flow deposit; and a debris flow (inferred total volume ofc. 60,000 m3) containing small (c. 8.0×2.0 m) deformed translated blocks. Geomorphological mapping oftheir distribution and interaction with preexisting sediments permit the reconstruction of a depositionalhistory for the stratigraphic units identified in the seismic volume.<br/

    Congruence and scope for incorporating ACTIVE principles into project management competency frameworks

    Get PDF
    Project Management competency has been recognised as a critical source of competitive advantage and key to successful project delivery. For this reason it is important that the competency frameworks used to achieve competence in project organizations are effective and fit for purpose. The European Construction Institute (ECI) developed eight principles through the ACTIVE (Achieving Competitiveness Through Innovation and Value Enhancement) initiative in an attempt to add value to the delivery of projects. This research explored the congruence and scope for incorporating the ACTIVE principles into current competency frameworks in use by project organizations. An interpretive and qualitative research approach was adopted, using semi-structured interviews with eight Project Managers and Learning and Development Managers in project organizations. The use of competency frameworks is not as widespread as first thought. Current competency frameworks in use in project organizations are based on a fairly comprehensive body of knowledge and largely congruent with the ACTIVE principles centered around concept definition, team management, supply chain relationship management, communication, risk management, innovation, project execution and performance measurement. However, ACTIVE principles’ underpinning ethos of creating a collaborative working environment in projects is a missing piece worthy of incorporation into competency frameworks currently in use in project organizations

    A solenoidal electron spectrometer for a precision measurement of the neutron ÎČ\beta-asymmetry with ultracold neutrons

    Full text link
    We describe an electron spectrometer designed for a precision measurement of the neutron ÎČ\beta-asymmetry with spin-polarized ultracold neutrons. The spectrometer consists of a 1.0-Tesla solenoidal field with two identical multiwire proportional chamber and plastic scintillator electron detector packages situated within 0.6-Tesla field-expansion regions. Select results from performance studies of the spectrometer with calibration sources are reported.Comment: 30 pages, 19 figures, 1 table, submitted to NIM

    Perturbation Theory for Spin Ladders Using Angular-Momentum Coupled Bases

    Full text link
    We compute bulk properties of Heisenberg spin-1/2 ladders using Rayleigh-Schr\"odinger perturbation theory in the rung and plaquette bases. We formulate a method to extract high-order perturbative coefficients in the bulk limit from solutions for relatively small finite clusters. For example, a perturbative calculation for an isotropic 2×122\times 12 ladder yields an eleventh-order estimate of the ground-state energy per site that is within 0.02% of the density-matrix-renormalization-group (DMRG) value. Moreover, the method also enables a reliable estimate of the radius of convergence of the perturbative expansion. We find that for the rung basis the radius of convergence is λc≃0.8\lambda_c\simeq 0.8, with λ\lambda defining the ratio between the coupling along the chain relative to the coupling across the chain. In contrast, for the plaquette basis we estimate a radius of convergence of λc≃1.25\lambda_c\simeq 1.25. Thus, we conclude that the plaquette basis offers the only currently available perturbative approach which can provide a reliable treatment of the physically interesting case of isotropic (λ=1)(\lambda=1) spin ladders. We illustrate our methods by computing perturbative coefficients for the ground-state energy per site, the gap, and the one-magnon dispersion relation.Comment: 22 pages. 9 figure

    Direct Integration of Micromachined Pipettes in a Flow Channel for Single DNA Molecule Study by Optical Tweezers

    Get PDF
    We have developed a micromachined flow cell consisting of a flow channel integrated with micropipettes. The flow cell is used in combination with an optical trap setup (optical tweezers) to study mechanical and structural properties of λ-DNA molecules. The flow cell was realized using silicon micromachining including the so-called buried channel technology to fabricate the micropipettes, the wet etching of glass to create the flow channel,\ud and the powder blasting of glass to make the fluid connections. The volume of the flow cell is 2 ”l. The pipettes have a length of 130 m, a width of 5–10 ”m, a round opening of 1 um and can be processed with different shapes. Using this flow cell we stretched single molecules (λ-DNA) showing typical force-extension curves also found with conventional techniques. These pipettes can be\ud also used for drug delivery, for injection of small gas bubbles into a liquid flow to monitor the streamlines, and for the mixing of liquids to study diffusion effects. The paper describes the design, the fabrication and testing of the flow cell

    Combinatorial Alexander Duality -- a Short and Elementary Proof

    Full text link
    Let X be a simplicial complex with the ground set V. Define its Alexander dual as a simplicial complex X* = {A \subset V: V \setminus A \notin X}. The combinatorial Alexander duality states that the i-th reduced homology group of X is isomorphic to the (|V|-i-3)-th reduced cohomology group of X* (over a given commutative ring R). We give a self-contained proof.Comment: 7 pages, 2 figure; v3: the sign function was simplifie

    Technologies for restricting mould growth on baled silage

    Get PDF
    End of project reportSilage is made on approximately 86% of Irish farms, and 85% of these make some baled silage. Baled silage is particularly important as the primary silage making, storage and feeding system on many beef and smaller sized farms, but is also employed as a secondary system (often associated with facilitating grazing management during mid-summer) on many dairy and larger sized farms (O’Kiely et al., 2002). Previous surveys on farms indicated that the extent of visible fungal growth on baled silage was sometimes quite large, and could be a cause for concern. Whereas some improvements could come from applying existing knowledge and technologies, the circumstances surrounding the making and storage of baled silage suggested that environmental conditions within the bale differed from those in conventional silos, and that further knowledge was required in order to arrive at a secure set of recommendations for baled silage systems. This report deals with the final in a series (O’Kiely et al., 1999; O’Kiely et al., 2002) of three consecutive research projects investigating numerous aspect of the science and technology of baled silage. The success of each depended on extensive, integrated collaboration between the Teagasc research centres at Grange and Oak Park, and with University College Dublin. As the series progressed the multidisciplinary team needed to underpin the programme expanded, and this greatly improved the amount and detail of the research undertaken. The major objective of the project recorded in this report was to develop technologies to improve the “hygienic value” of baled silage
    • 

    corecore